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Universality and double critical end points
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A double critical end point in the two-dimensional spin-3/2 Blume-Capel model is studied via extensive
Monte Carlo simulations. The resultant scaling character of the probability distribution of the mixing scaling
operators allows us to locate the double critical end point precisely and also to convincingly show that it indeed
belongs to the same universality class as the critical points.

DOI: 10.1103/PhysRevE.67.015103 PACS number~s!: 64.60.2i, 02.70.Uu, 05.50.1q, 05.70.Jk
ns
n
d

s
nd
e
r

Tr
a
l t
,
in
m
o

ica
r

nt

s

in
-

s
a
d
of
l
b
an
ro
g

he
ls

e-
e

am

e
i-

the
t
nd,
has
pel
ce
in

d

d-
e

till

lity
of

la-
il-

igh
netic

-

s
e
se

s at

f

Multicritical phenomena have been the subject of inte
study for more than half a century, both experimentally a
theoretically. One of the first multicritical points investigate
is the tricritical point~TCP!, which can be roughly viewed a
a point separating a first-order transition line from a seco
order transition line~or, by analogy to the critical point, th
end of a line of three-phase coexistence, at which the th
coexisting phases simultaneously become critical!. Tricritical
points occur in a variety of systems@1#, e.g., 3He-4He mix-
tures, metamagnets, multicomponent fluid mixtures, etc.
critical phenomena are well understood with the tricritic
exponents differing from the critical ones, and being equa
the classical exponents for dimensionsd>3. In some cases
however, instead of a TCP, one finds a critical end po
~CEP! when a line of second-order phase transitions ter
nates at a first-order phase boundary delimiting a new n
critical phase. The CEP are common in a variety of phys
systems, notably superfluids, binary fluid mixtures, bina
alloys, some ferromagnets and ferroelectrics, etc. Rece
an extensive Monte Carlo~MC! simulation@2# provided the
first evidence of singular behavior on the first-order tran
tion line close to CEP in a classical binary fluid@3,4#.

A more unusual end point, the double critical end po
~DCE! @5#, occurs where two critical lines end simulta
neously at a first-order phase boundary~two distinct critical
systems coexist; the namebicritical end point is sometimes
encountered in the literature!. Although, not so ubiquitous a
the CEP, double critical end points have been experiment
observed in liquid-liquid-vapor equilibrium in binary an
quasibinary systems@6#, and there is also some indication
a DCE in the metamagnet FeBr2 @7#. From the theoretica
point of view, systems such as the next-nearest-neigh
Ising antiferromagnetic model, the layered metamagnet
the random-field Ising model have been considered as st
candidates to present a DCE since, at least accordin
mean-field approximations~MFA!, they exhibit a splitting of
the TCP into a CEP and a DCE@8–10#. It has been recently
confirmed, however, that such splitting is an artifact of t
MFA and, in fact, does not occur in any of the above mode
~i! Monte Carlo renormalization group on the thre
dimensional (d53) random-field Ising model shows that th
phase transition at weak random field belongs to the s
universality class as the zero-temperature transition@11#; ~ii !
theoretical approaches, based on MC simulations, in thd
52 @12# andd53 @13,14# next-nearest-neighbor Ising ant
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ferromagnetic model and layered metamagnets, and also
master equation formalism for thed52 layered metamagne
@15#, predict only the existence of a TCP. On the other ha
different behavior between two and three dimensions
been observed in the antiferromagnet spin-1 Blume-Ca
~BC! model. The MC simulations provided clear eviden
for the decomposition of the TCP into a CEP and a DCE
d53 @16# while in d52, only a fully stable TCP is observe
@17#. Apparently, fluctuations ind52 are strong enough to
destroy the splitting of the TCP in all of the the above mo
els and ind53, where fluctuations are smaller, only th
antiferromagnetic BC spin-1 model@18# exhibits the DCE. In
addition, questions regarding its universality class are s
unanswered@8,13,14,19#.

In this paper, we address the question of the universa
at a double critical end point: we consider a generalization
the Blume-Capel model to spin 3/2 and provide the simu
tion evidence for its universal critical behavior. The Ham
tonian is given@20# by

H52J(̂
i j &

SiSj1D(
i 51

N

Si
22H(

i 51

N

Si , ~1!

where J is the exchange interaction,D is the crystal field
anisotropy,H is a uniform external field,Si561/2,63/2,
andN is the total number of spins. The phase diagram~based
on that for the spin-1 model! is schematically depicted in
Fig. 1. In theH50 plane, there is anS surface where two
ordered phases with opposite magnetizations coexist. At h
temperatures, this surface is separated from the paramag
phase by a critical linel. At low T, S contains two distinct
regions:S3 being the locus ofF3

6 ferromagnetic phases~all
spins aligned in the13/2 component coexist with the corre
sponding spin reversed phase forD,dJ andT50) andS1

the locus of a generally differentF1
6 ferromagnetic phase

~for D.dJ andT50, the phase with all spins aligned in th
11/2 component coexists with the spin reversed pha!.
FromD5dJ, one has a line of quadruple pointsp where the
above four ordered phases coexist, and which terminate
the double critical end point~at this point two critical phases
coexist:F3

1[F1
1 andF3

2[F1
2). By switching on an exter-

nal uniform fieldH, one produces two symmetric wings o
©2003 The American Physical Society03-1



ag
de
ns
he
s
th

t
y
he

e

ith
e
f
f
e

e-

y

l-

-

e.
st-
e
ise

p

to-
s
by

the
spe-
ole
ent
an-
CE

in
of

E

xt

RAPID COMMUNICATIONS

J. A. PLASCAK AND D. P. LANDAU PHYSICAL REVIEW E67, 015103~R! ~2003!
first-order surfacesR6, which go to infinity at low tempera-
tures. These wings are limited byl6 critical lines, respec-
tively, ending at the DCE.

One of the most powerful approaches to the study of m
netic systems by MC simulations is the use of the or
parameter distribution function. In addition, MC simulatio
also provide readily accessible fluctuation spectra of ot
observables, needed when nonsymmetric phase diagram
present in field-temperature space, as in this case. It is
worthwhile to define convenient observables as well as
extend the concepts of scale invariance and universalit
their distribution probabilities. Due to the invariance of t
configurational energy under spin reversal, thep quadruple
line, together with the DCE, are immersed in theSsurface of
Fig. 1. The picture in theH50 plane then resembles th
liquid-vapor coexistence curve, with thedouble criticalend
point at (Dd ,Td). This plane has already been explored w
different techniques; but controversy about the very natur
this point~if it is critical or tetracritical! precluded studies o
its universal behavior@21#. We now know that the lack o
symmetry among the four different phases leads to the w
knownmixingscaling fields@22#: this multicritical point is in
fact controlled by three relevant scaling fieldst, g ,h com-
prising linear combinations of the three singl
thermodynamic fieldsT, D, H as

t5T2Td1s~D2Dd!,

g5D2Dd1r ~T2Td!, h5H~Hd50!, ~2!

where s and r control the degree of field mixing in theS
surface~the special spin reversal symmetry impliesh5H).
As a result, the conjugate scaling operatorsE,D,M are also

FIG. 1. Schematic phase diagram of the model described by
~1! in the Hamiltonian parameter space. Thep line starts atT
50, H50, D5dJ and ends at the DCE. For details, see the te
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linear combinations of the nearest-neighbor energy densitu,
the quadrupoleq, and magnetizationm as

E5
~u2rq !

12rs
, D5

~q2su!

12rs
, M5m, ~3!

u5
1

N (̂
i j &

SiSj , q5
1

N (
i 51

N

Si
2 , m5

1

N (
i 51

N

Si . ~4!

According to finite-size scaling@23# and renormalization
group procedures@24#, the joint probability distribution
pL(E,D,M) near criticality should obey the following sca
ing ansatz for sufficiently large system sizesL:

pL~E,D,M !.LE
1LD

1LM
1

3 p̃~LE
1dE,LD

1dD,LM
1 dM,LEt,LDg,LMh!,

~5!

LE5aELd2yE, LD5aDLd2yD, LM5aMLd2yM,

where LELE
15LDLD

15LMLM
1 5Ld, and dE5E2^E&c ,

dD5D2^D&c , dM5M2^M&c , and c stands for aver-
ages taken at criticality andyi for the eigenvalues. For ap
propriate choices of the nonuniversal factorsaE , aD , and
aM , the function p̃ is expected to be universal@25#. Pre-
cisely at criticality, one has

pL~E,D,M!.LE
1LD

1LM
1 p̃* ~LE

1dE,LD
1dD,LM

1 dM!,
~6!

where p̃* (x,y,z) is the p̃ function in Eq. ~5! for t5g5h

50. It follows that p̃* (x,y,z) constitutes a hallmark of a
universality class. This distribution will be exploited her
Through extensive Monte Carlo simulations along the fir
order line ford52, we will be able not only to determine th
universal behavior of the DCE but also to find its prec
location in the phase diagram.

In the course of the simulations to determine thep quad-
rupole line, we studied squareL3L lattices with fully peri-
odic boundary conditions for system sizes of length 8<L
<64 at H50. Following equilibration, runs comprising u
to 63106 MCS ~Monte Carlo steps per site! were performed
using metropolis sequential single spin-flip updates. His
gram reweighting@26# and finite-size scaling technique
were used to precisely locate the first-order transition line
measuring the minima of the fourth-order cumulants of
energy and order parameter, and also the maxima of the
cific heat, the linear magnetic susceptibility and quadrup
susceptibility. This approach has proved to be quite effici
and provides good results in studying strong first-order tr
sitions. Figure 2 depicts the phase diagram close to the D
including the second-orderl boundary. It turns out, how-
ever, that not all points along thep line actually identify the
coexistence curve itself; but a continuation of it persists
finite-size systems~just a rough estimate of the terminus
the weak first-order line is achieved in this case!. To over-
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come this difficulty in determining the precise location of t
DCE from the previous measurements, thep̃* distribution
was invoked.

Having obtained the location of the first-order transiti
line, we made longer runs with 1.23107 MCS for lattices
L<32 and 3.03107 MCS for L548,64. During the simula-
tions, the joint probability distributionpL(u,q,m) was col-
lected in the form of a histogram. This distribution is relat
to that of the scaling operators given in Eq.~5! through

pL~u,q,m!5
1

12rs
pL~E,D,M!. ~7!

Formal integration ofpL(E,D,M) over one or more vari-
ables provides lower-dimensional distributions, e.g., integ
ing overE andM yields pL(D). This is the desired distri-
bution sinceD is the conjugate scaling operator of th
corresponding scaling fieldg. Choosing the non-universa
scale factoraD in Eqs.~3!–~7! so that, for each system siz
the one-dimensional distribution probabilitypL(D) as a
function of the variabley5aDLyD(D2^D&c) has unit vari-
ance, we are left with only three parameters: the redu

TABLE I. Parameters for thep̃* (D) distribution.

L t d s

12 0.59650~2! 1.98620~1! 20.17(1)
16 0.59500~2! 1.98630~1! 20.18(1)
24 0.59410~2! 1.98646~1! 20.21(1)
32 0.59390~2! 1.98648~2! 20.21(1)
48 0.59380~5! 1.98650~2! 20.21(2)
64 0.59375~5! 1.98652~2! 20.21(3)

FIG. 2. Portion of theSsurface phase diagram of Fig. 1 close
the DCE~in the reduced variablesD/J andkBT/J). Diamonds rep-
resent the second-orderl phase transition line. Circles give th
first-orderp transition line~the dashed line is a guide to the eye!.
The finite-size extension is given by the dotted line. The filled cir
indicates the position of the DCE. Errors do not exceed the sym
sizes.
01510
t-

d

temperaturet5kBT/J, the crystal field ratiod5D/J, and the
field mixing parameters. Thus, by tuningt, d and s, again
with the aid of the histogram reweighting technique, we a
lyzed the shape of the distributionp̃L* (D) and searched for a
symmetric behavior in they variable. This provides an addi
tional criterion for determining coexisting phases and p
duces results in close agreement with the procedure
scribed above. Moreover, the great advantage now is tha
p̃L* (D) obtained can be mapped to a previously compu
distribution presumed to be a member of the same univer
ity class. Figure 3 presents the distributionp̃L* (D), together
with the one obtained for the spin-1/2 Ising model at its ex

FIG. 4. Reduced temperaturet of Table I plotted as a function o
L2(u11)/n with u52 andn51 ~the exact values for thed52 Ising
universality class!.

ol

FIG. 3. Scaling operator distributionp̃* (D) for several values
of L according to the parameters given in the text. Also shown
comparison is the corresponding distribution for the tw
dimensional Ising model forL532. All distributions are scaled to
unit norm and variance. Statistical errors do not exceed the sym
sizes.
3-3
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critical temperature. The values for the parameters are g
in Table I. The s parameter reaches the values5
20.21(3), and theparameterr 5210.0(4) is obtained from
the measured gradient of the phase boundary at the DC
Fig. 2. This large value ofr reflects the fact that the first
order transition line in the phase diagram is almost vert
~note that the scale forD/J is extremely fine in Fig. 2!. The
dependence of the double critical end point temperature oL
is shown in Fig. 4. It has the expected behaviort(L)
5t(`)1CL2(u11)/n @25#, wheren51 andu52 for d52 @27#,
the latter being the correction to scaling exponent. The b
estimate for the location of the double critical end point
td50.59374(7) anddd51.98647(5). From the scaling of
the distribution for different finite sizesL as well as from the
quite good mapping to the corresponding Ising distributi
one can clearly see that they do indeed belong to the s
universality class. The same should hold for thed53 model
with the universality class being that of the thre
dimensional Ising model.
l
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Questions regarding possible nonanalyticities in the ph
boundary plane~S! close to the DCE can now be easily u
derstood. In fact, the phase boundary forH50 in Fig. 1 is
completely analytic. The absence of singularities, even cl
to the terminus of the first-order line, is due to the fact th
both critical linesl1 andl2 not only are in the same uni
versality class but are symmetric too. This indeed corro
rates the prediction suggested by previous scaling argum
@19#, where there is a cancellation of the nonanalytic con
butions to the phase boundary. However, the scenario sh
be quite different in a less symmetric context. Even in t
case, from our simulations, we argue that the DCE univ
sality class will still be the same as that of the usual criti
point, despite the appearance of some singularities in
phase boundary region close to it.
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